miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

نویسندگان

  • Bo Li
  • Xi Wang
  • In Young Choi
  • Yu-Chen Wang
  • Siyuan Liu
  • Alexander T Pham
  • Heesung Moon
  • Drake J Smith
  • Dinesh S Rao
  • Mark P Boldin
  • Lili Yang
چکیده

Autoreactive CD4 T cells that differentiate into pathogenic Th17 cells can trigger autoimmune diseases. Therefore, investigating the regulatory network that modulates Th17 differentiation may yield important therapeutic insights. miR-146a has emerged as a critical modulator of immune reactions, but its role in regulating autoreactive Th17 cells and organ-specific autoimmunity remains largely unknown. Here, we have reported that miR-146a-deficient mice developed more severe experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). We bred miR-146a-deficient mice with 2D2 T cell receptor-Tg mice to generate 2D2 CD4 T cells that are deficient in miR-146a and specific for myelin oligodendrocyte glycoprotein (MOG), an autoantigen in the EAE model. miR-146a-deficient 2D2 T cells induced more severe EAE and were more prone to differentiate into Th17 cells. Microarray analysis revealed enhancements in IL-6- and IL-21-induced Th17 differentiation pathways in these T cells. Further study showed that miR-146a inhibited the production of autocrine IL-6 and IL-21 in 2D2 T cells, which in turn reduced their Th17 differentiation. Thus, our study identifies miR-146a as an important molecular brake that blocks the autocrine IL-6- and IL-21-induced Th17 differentiation pathways in autoreactive CD4 T cells, highlighting its potential as a therapeutic target for treating autoimmune diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of miR-146a in Immune System and Autoimmunity

MicroRNAs (miRNAs) are small preserved non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3' UTR of mRNAs for translational repression or degradation. The rising evidence has established the significant role of miRNAs within the regulation of immune system and the prevention of autoimmunity. MiR-146a has obtained an importance as a modulator of differ...

متن کامل

The aberrant expression of microRNAs and correlations with T cell subsets in patients with immune thrombocytopenia

Both microRNAs and T helper (Th) cells involve in autoimmune diseases and their effects and interactions in immune thrombocytopenia (ITP) remain unclear. In the present study, we investigated the expression profiles of seven immune-related microRNAs (miR-155, 146a, 326, 142-3p, 17-5p, 21 and 181a) and the frequencies of four Th cells (Th1, Th2, Th17 and Treg) in peripheral blood mononuclear cel...

متن کامل

P 51: The Role of T Helper 17 in Pathogenesis of Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) which causes demyelination of the nerve fibers. The etiology of this disease is not well understood but it is believed that T helpers play a central role in MS. Numerous findings support the view that Th17 cells play an essential role in pathogenesis of MS and IL-17 secreting T (Th17) cells have a role in infla...

متن کامل

MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...

متن کامل

MicroRNA-146a regulates ICOS–ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres

Tight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization. Loss of miR-146a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 127 10  شماره 

صفحات  -

تاریخ انتشار 2017